DISP
Abstract:A chatbot is a software developed to help reply to text or voice conversations automatically and quickly in real time. In the agriculture sector, the existing smart agriculture systems just use data from sensing and internet of things (IoT) technologies that exclude crop cultivation knowledge to support decision-making by farmers. To enhance this, the chatbot application can be an assistant to farmers to provide crop cultivation knowledge. Consequently, we propose the LINE chatbot application as an information and knowledge representation providing crop cultivation recommendations to farmers. It works with smart agriculture and recommendation systems. Our proposed LINE chatbot application consists of five main functions (start/stop menu, main page, drip irri gation page, mist irrigation page, and monitor page). Farmers will receive information for data monitoring to support their decision-making. Moreover, they can control the irrigation system via the LINE chatbot. Furthermore, farmers can ask questions relevant to the crop environment via a chat box. After implementing our proposed chatbot, farmers are very satisfied with the application, scoring a 96% satisfaction score. However, in terms of asking questions via chat box, this LINE chatbot application is a rule-based bot or script bot. Farmers have to type in the correct keywords as prescribed, otherwise they won't get a response from the chatbots. In the future, we will enhance the asking function of our LINE chatbot to be an intelligent bot.
Abstract:Opinion mining mainly involves three elements: feature and feature-of relations, opinion expressions and the related opinion attributes (e.g. Polarity), and feature-opinion relations. Although many works have emerged to achieve its aim of gaining information, the previous researches typically handled each of the three elements in isolation, which cannot give sufficient information extraction results; hence, the complexity and the running time of information extraction is increased. In this paper, we propose an opinion mining extraction algorithm to jointly discover the main opinion mining elements. Specifically, the algorithm automatically builds kernels to combine closely related words into new terms from word level to phrase level based on dependency relations; and we ensure the accuracy of opinion expressions and polarity based on: fuzzy measurements, opinion degree intensifiers, and opinion patterns. The 3458 analyzed reviews show that the proposed algorithm can effectively identify the main elements simultaneously and outperform the baseline methods. The proposed algorithm is used to analyze the features among heterogeneous products in the same category. The feature-by-feature comparison can help to select the weaker features and recommend the correct specifications from the beginning life of a product. From this comparison, some interesting observations are revealed. For example, the negative polarity of video dimension is higher than the product usability dimension for a product. Yet, enhancing the dimension of product usability can more effectively improve the product (C) 2015 Elsevier Ltd. All rights reserved.