Abstract:Cell-free massive MIMO (CF-mMIMO) represent a deeply investigated evolution from the conventional multicell co-located massive MIMO (MC-mMIMO) network deployments. Anticipating a gradual integration of CF-mMIMO systems alongside pre-existing MC-mMIMO network elements, this paper considers a scenario where both deployments coexist, in order to serve a large number of users using a shared set of frequencies. The investigation explores the impact of this coexistence on the network's downlink performance, considering various degrees of mutual cooperation, precoder selection, and power control strategies. Moreover, to take into account the effect of the proposed cooperation scenarios on the fronthaul links, this paper also provides a fronthaul-aware heuristic association algorithm between users and network elements, which permits fulfilling the fronthaul requirement on each link. The research is finally completed by extensive simulations, shedding light on the performance outcomes associated with the diverse cooperation levels and several solutions delineated in the paper.
Abstract:Reconfigurable antennas (RAs) are a promising technology to enhance the capacity and coverage of wireless communication systems. However, RA systems have two major challenges: (i) High computational complexity of mode selection, and (ii) High overhead of channel estimation for all modes. In this paper, we develop a low-complexity iterative mode selection algorithm for data transmission in an RA-MIMO system. Furthermore, we study channel estimation of an RA multi-user MIMO system. However, given the coherence time, it is challenging to estimate channels of all modes. We propose a mode selection scheme to select a subset of modes, train channels for the selected subset, and predict channels for the remaining modes. In addition, we propose a prediction scheme based on pattern correlation between modes. Representative simulation results demonstrate the system's channel estimation error and achievable sum-rate for various selected modes and different signal-to-noise ratios (SNRs).
Abstract:MIMO technology has enabled spatial multiple access and has provided a higher system spectral efficiency (SE). However, this technology has some drawbacks, such as the high number of RF chains that increases complexity in the system. One of the solutions to this problem can be to employ reconfigurable antennas (RAs) that can support different radiation patterns during transmission to provide similar performance with fewer RF chains. In this regard, the system aims to maximize the SE with respect to optimum beamforming design and RA mode selection. Due to the non-convexity of this problem, we propose machine learning-based methods for RA antenna mode selection in both dynamic and static scenarios. In the static scenario, we present how to solve the RA mode selection problem, an integer optimization problem in nature, via deep convolutional neural networks (DCNN). A Multi-Armed-bandit (MAB) consisting of offline and online training is employed for the dynamic RA state selection. For the proposed MAB, the computational complexity of the optimization problem is reduced. Finally, the proposed methods in both dynamic and static scenarios are compared with exhaustive search and random selection methods.