Abstract:This paper demonstrates that grokking behavior in modular arithmetic with a modulus P in a neural network can be controlled by modifying the profile of the activation function as well as the depth and width of the model. Plotting the even PCA projections of the weights of the last NN layer against their odd projections further yields patterns which become significantly more uniform when the nonlinearity is increased by incrementing the number of layers. These patterns can be employed to factor P when P is nonprime. Finally, a metric for the generalization ability of the network is inferred from the entropy of the layer weights while the degree of nonlinearity is related to correlations between the local entropy of the weights of the neurons in the final layer.
Abstract:This paper introduces a modified variational autoencoder (VAEs) that contains an additional neural network branch. The resulting branched VAE (BVAE) contributes a classification component based on the class labels to the total loss and therefore imparts categorical information to the latent representation. As a result, the latent space distributions of the input classes are separated and ordered, thereby enhancing the classification accuracy. The degree of improvement is quantified by numerical calculations employing the benchmark MNIST dataset for both unrotated and rotated digits. The proposed technique is then compared to and then incorporated into a VAE with fixed output distributions. This procedure is found to yield improved performance for a wide range of output distributions.