Abstract:Would not it be much more convenient for everybody to try on clothes by only looking into a mirror ? The answer to that problem is virtual try-on, enabling users to digitally experiment with outfits. The core challenge lies in realistic image-to-image translation, where clothing must fit diverse human forms, poses, and figures. Early methods, which used 2D transformations, offered speed, but image quality was often disappointing and lacked the nuance of deep learning. Though GAN-based techniques enhanced realism, their dependence on paired data proved limiting. More adaptable methods offered great visuals but demanded significant computing power and time. Recent advances in diffusion models have shown promise for high-fidelity translation, yet the current crop of virtual try-on tools still struggle with detail loss and warping issues. To tackle these challenges, this paper proposes EfficientVITON, a new virtual try-on system leveraging the impressive pre-trained Stable Diffusion model for better images and deployment feasibility. The system includes a spatial encoder to maintain clothings finer details and zero cross-attention blocks to capture the subtleties of how clothes fit a human body. Input images are carefully prepared, and the diffusion process has been tweaked to significantly cut generation time without image quality loss. The training process involves two distinct stages of fine-tuning, carefully incorporating a balance of loss functions to ensure both accurate try-on results and high-quality visuals. Rigorous testing on the VITON-HD dataset, supplemented with real-world examples, has demonstrated that EfficientVITON achieves state-of-the-art results.
Abstract:The problem of converting images of text into plain text is a widely researched topic in both academia and industry. Arabic handwritten Text Recognation (AHTR) poses additional challenges due to diverse handwriting styles and limited labeled data. In this paper we present a complete OCR pipeline that starts with line segmentation using Differentiable Binarization and Adaptive Scale Fusion techniques to ensure accurate detection of text lines. Following segmentation, a CNN-BiLSTM-CTC architecture is applied to recognize characters. Our system, trained on the Arabic Multi-Fonts Dataset (AMFDS), achieves a Character Recognition Rate (CRR) of 99.20% and a Word Recognition Rate (WRR) of 93.75% on single-word samples containing 7 to 10 characters, along with a CRR of 83.76% for sentences. These results demonstrate the system's strong performance in handling Arabic scripts, establishing a new benchmark for AHTR systems.
Abstract:The objective of this article is to optimize the overall traffic flow on freeways using multiple ramp metering controls plus its complementary Dynamic Speed Limits (DSLs). An optimal freeway operation can be reached when minimizing the difference between the freeway density and the critical ratio for maximum traffic flow. In this article, a Multi-Agent Reinforcement Learning for Freeways Control (MARL-FWC) system for ramps metering and DSLs is proposed. MARL-FWC introduces a new microscopic framework at the network level based on collaborative Markov Decision Process modeling (Markov game) and an associated cooperative Q-learning algorithm. The technique incorporates payoff propagation (Max-Plus algorithm) under the coordination graphs framework, particularly suited for optimal control purposes. MARL-FWC provides three control designs: fully independent, fully distributed, and centralized; suited for different network architectures. MARL-FWC was extensively tested in order to assess the proposed model of the joint payoff, as well as the global payoff. Experiments are conducted with heavy traffic flow under the renowned VISSIM traffic simulator to evaluate MARL-FWC. The experimental results show a significant decrease in the total travel time and an increase in the average speed (when compared with the base case) while maintaining an optimal traffic flow.