Abstract:Real-time understanding of long video streams remains challenging for multimodal large language models (VLMs) due to redundant frame processing and rapid forgetting of past context. Existing streaming systems rely on fixed-interval decoding or cache pruning, which either produce repetitive outputs or discard crucial temporal information. We introduce Event-VStream, an event-aware framework that represents continuous video as a sequence of discrete, semantically coherent events. Our system detects meaningful state transitions by integrating motion, semantic, and predictive cues, and triggers language generation only at those boundaries. Each event embedding is consolidated into a persistent memory bank, enabling long-horizon reasoning while maintaining low latency. Across OVOBench-Realtime, and long-form Ego4D evaluations, Event-VStream achieves competitive performance. It improves over a VideoLLM-Online-8B baseline by +10.4 points on OVOBench-Realtime, achieves performance close to Flash-VStream-7B despite using only a general-purpose LLaMA-3-8B text backbone, and maintains around 70% GPT-5 win rate on 2-hour Ego4D streams.
Abstract:As frontier AI systems are pretrained on web-scale data, test set contamination has become a critical concern for accurately assessing their capabilities. While research has thoroughly investigated the impact of test set contamination on discriminative evaluations like multiple-choice question-answering, comparatively little research has studied the impact of test set contamination on generative evaluations. In this work, we quantitatively assess the effect of test set contamination on generative evaluations through the language model lifecycle. We pretrain language models on mixtures of web data and the MATH benchmark, sweeping model sizes and number of test set replicas contaminating the pretraining corpus; performance improves with contamination and model size. Using scaling laws, we make a surprising discovery: including even a single test set replica enables models to achieve lower loss than the irreducible error of training on the uncontaminated corpus. We then study further training: overtraining with fresh data reduces the effects of contamination, whereas supervised finetuning on the training set can either increase or decrease performance on test data, depending on the amount of pretraining contamination. Finally, at inference, we identify factors that modulate memorization: high sampling temperatures mitigate contamination effects, and longer solutions are exponentially more difficult to memorize than shorter ones, presenting a contrast with discriminative evaluations, where solutions are only a few tokens in length. By characterizing how generation and memorization interact, we highlight a new layer of complexity for trustworthy evaluation of AI systems.
Abstract:Many unresolved legal questions over LLMs and copyright center on memorization: whether specific training data have been encoded in the model's weights during training, and whether those memorized data can be extracted in the model's outputs. While many believe that LLMs do not memorize much of their training data, recent work shows that substantial amounts of copyrighted text can be extracted from open-weight models. However, it remains an open question if similar extraction is feasible for production LLMs, given the safety measures these systems implement. We investigate this question using a two-phase procedure: (1) an initial probe to test for extraction feasibility, which sometimes uses a Best-of-N (BoN) jailbreak, followed by (2) iterative continuation prompts to attempt to extract the book. We evaluate our procedure on four production LLMs -- Claude 3.7 Sonnet, GPT-4.1, Gemini 2.5 Pro, and Grok 3 -- and we measure extraction success with a score computed from a block-based approximation of longest common substring (nv-recall). With different per-LLM experimental configurations, we were able to extract varying amounts of text. For the Phase 1 probe, it was unnecessary to jailbreak Gemini 2.5 Pro and Grok 3 to extract text (e.g, nv-recall of 76.8% and 70.3%, respectively, for Harry Potter and the Sorcerer's Stone), while it was necessary for Claude 3.7 Sonnet and GPT-4.1. In some cases, jailbroken Claude 3.7 Sonnet outputs entire books near-verbatim (e.g., nv-recall=95.8%). GPT-4.1 requires significantly more BoN attempts (e.g., 20X), and eventually refuses to continue (e.g., nv-recall=4.0%). Taken together, our work highlights that, even with model- and system-level safeguards, extraction of (in-copyright) training data remains a risk for production LLMs.
Abstract:While the capabilities and utility of AI systems have advanced, rigorous norms for evaluating these systems have lagged. Grand claims, such as models achieving general reasoning capabilities, are supported with model performance on narrow benchmarks, like performance on graduate-level exam questions, which provide a limited and potentially misleading assessment. We provide a structured approach for reasoning about the types of evaluative claims that can be made given the available evidence. For instance, our framework helps determine whether performance on a mathematical benchmark is an indication of the ability to solve problems on math tests or instead indicates a broader ability to reason. Our framework is well-suited for the contemporary paradigm in machine learning, where various stakeholders provide measurements and evaluations that downstream users use to validate their claims and decisions. At the same time, our framework also informs the construction of evaluations designed to speak to the validity of the relevant claims. By leveraging psychometrics' breakdown of validity, evaluations can prioritize the most critical facets for a given claim, improving empirical utility and decision-making efficacy. We illustrate our framework through detailed case studies of vision and language model evaluations, highlighting how explicitly considering validity strengthens the connection between evaluation evidence and the claims being made.
Abstract:We consider the following problem: given the weights of two models, can we test whether they were trained independently -- i.e., from independent random initializations? We consider two settings: constrained and unconstrained. In the constrained setting, we make assumptions about model architecture and training and propose a family of statistical tests that yield exact p-values with respect to the null hypothesis that the models are trained from independent random initializations. These p-values are valid regardless of the composition of either model's training data; we compute them by simulating exchangeable copies of each model under our assumptions and comparing various similarity measures of weights and activations between the original two models versus these copies. We report the p-values from these tests on pairs of 21 open-weight models (210 total pairs) and correctly identify all pairs of non-independent models. Our tests remain effective even if one model was fine-tuned for many tokens. In the unconstrained setting, where we make no assumptions about training procedures, can change model architecture, and allow for adversarial evasion attacks, the previous tests no longer work. Instead, we propose a new test which matches hidden activations between two models, and which is robust to adversarial transformations and to changes in model architecture. The test can also do localized testing: identifying specific non-independent components of models. Though we no longer obtain exact p-values from this, empirically we find it behaves as one and reliably identifies non-independent models. Notably, we can use the test to identify specific parts of one model that are derived from another (e.g., how Llama 3.1-8B was pruned to initialize Llama 3.2-3B, or shared layers between Mistral-7B and StripedHyena-7B), and it is even robust to retraining individual layers of either model from scratch.