Abstract:In the emerging field of goal-oriented communications, the focus has shifted from reconstructing data to directly performing specific learning tasks, such as classification, segmentation, or pattern recognition, on the received coded data. In the commonly studied scenario of classification from compressed images, a key objective is to enable learning directly on entropy-coded data, thereby bypassing the computationally intensive step of data reconstruction. Conventional entropy-coding methods, such as Huffman and Arithmetic coding, are effective for compression but disrupt the data structure, making them less suitable for direct learning without decoding. This paper investigates the use of low-density parity-check (LDPC) codes -- originally designed for channel coding -- as an alternative entropy-coding approach. It is hypothesized that the structured nature of LDPC codes can be leveraged more effectively by deep learning models for tasks like classification. At the receiver side, gated recurrent unit (GRU) models are trained to perform image classification directly on LDPC-coded data. Experiments on datasets like MNIST, Fashion-MNIST, and CIFAR show that LDPC codes outperform Huffman and Arithmetic coding in classification tasks, while requiring significantly smaller learning models. Furthermore, the paper analyzes why LDPC codes preserve data structure more effectively than traditional entropy-coding techniques and explores the impact of key code parameters on classification performance. These results suggest that LDPC-based entropy coding offers an optimal balance between learning efficiency and model complexity, eliminating the need for prior decoding.
Abstract:In goal-oriented communications, the objective of the receiver is often to apply a Deep-Learning model, rather than reconstructing the original data. In this context, direct learning over compressed data, without any prior decoding, holds promise for enhancing the time-efficient execution of inference models at the receiver. However, conventional entropic-coding methods like Huffman and Arithmetic break data structure, rendering them unsuitable for learning without decoding. In this paper, we propose an alternative approach in which entropic coding is realized with Low-Density Parity Check (LDPC) codes. We hypothesize that Deep Learning models can more effectively exploit the internal code structure of LDPC codes. At the receiver, we leverage a specific class of Recurrent Neural Networks (RNNs), specifically Gated Recurrent Unit (GRU), trained for image classification. Our numerical results indicate that classification based on LDPC-coded bit-planes surpasses Huffman and Arithmetic coding, while necessitating a significantly smaller learning model. This demonstrates the efficiency of classification directly from LDPC-coded data, eliminating the need for any form of decompression, even partial, prior to applying the learning model.