Abstract:The recently proposed plug-and-play (PnP) framework allows leveraging recent developments in image denoising to tackle other, more involved, imaging inverse problems. In a PnP method, a black-box denoiser is plugged into an iterative algorithm, taking the place of a formal denoising step that corresponds to the proximity operator of some convex regularizer. While this approach offers flexibility and excellent performance, convergence of the resulting algorithm may be hard to analyze, as most state-of-the-art denoisers lack an explicit underlying objective function. In this paper, we propose a PnP approach where a scene-adapted prior (i.e., where the denoiser is targeted to the specific scene being imaged) is plugged into ADMM (alternating direction method of multipliers), and prove convergence of the resulting algorithm. Finally, we apply the proposed framework in two different imaging inverse problems: hyperspectral sharpening/fusion and image deblurring from blurred/noisy image pairs.
Abstract:Recent frameworks, such as the so-called plug-and-play, allow us to leverage the developments in image denoising to tackle other, and more involved, problems in image processing. As the name suggests, state-of-the-art denoisers are plugged into an iterative algorithm that alternates between a denoising step and the inversion of the observation operator. While these tools offer flexibility, the convergence of the resulting algorithm may be difficult to analyse. In this paper, we plug a state-of-the-art denoiser, based on a Gaussian mixture model, in the iterations of an alternating direction method of multipliers and prove the algorithm is guaranteed to converge. Moreover, we build upon the concept of scene-adapted priors where we learn a model targeted to a specific scene being imaged, and apply the proposed method to address the hyperspectral sharpening problem.
Abstract:State-of-the-art algorithms for imaging inverse problems (namely deblurring and reconstruction) are typically iterative, involving a denoising operation as one of its steps. Using a state-of-the-art denoising method in this context is not trivial, and is the focus of current work. Recently, we have proposed to use a class-adapted denoiser (patch-based using Gaussian mixture models) in a so-called plug-and-play scheme, wherein a state-of-the-art denoiser is plugged into an iterative algorithm, leading to results that outperform the best general-purpose algorithms, when applied to an image of a known class (e.g. faces, text, brain MRI). In this paper, we extend that approach to handle situations where the image being processed is from one of a collection of possible classes or, more importantly, contains regions of different classes. More specifically, we propose a method to locally select one of a set of class-adapted Gaussian mixture patch priors, previously estimated from clean images of those classes. Our approach may be seen as simultaneously performing segmentation and restoration, thus contributing to bridging the gap between image restoration/reconstruction and analysis.
Abstract:This paper proposes using a Gaussian mixture model as a prior, for solving two image inverse problems, namely image deblurring and compressive imaging. We capitalize on the fact that variable splitting algorithms, like ADMM, are able to decouple the handling of the observation operator from that of the regularizer, and plug a state-of-the-art algorithm into the pure denoising step. Furthermore, we show that, when applied to a specific type of image, a Gaussian mixture model trained from an database of images of the same type is able to outperform current state-of-the-art methods.