Abstract:Sparse training is often adopted in cross-device federated learning (FL) environments where constrained devices collaboratively train a machine learning model on private data by exchanging pseudo-gradients across heterogeneous networks. Although sparse training methods can reduce communication overhead and computational burden in FL, they are often not used in practice for the following key reasons: (1) data heterogeneity makes it harder for clients to reach consensus on sparse models compared to dense ones, requiring longer training; (2) methods for obtaining sparse masks lack adaptivity to accommodate very heterogeneous data distributions, crucial in cross-device FL; and (3) additional hyperparameters are required, which are notably challenging to tune in FL. This paper presents SparsyFed, a practical federated sparse training method that critically addresses the problems above. Previous works have only solved one or two of these challenges at the expense of introducing new trade-offs, such as clients' consensus on masks versus sparsity pattern adaptivity. We show that SparsyFed simultaneously (1) can produce 95% sparse models, with negligible degradation in accuracy, while only needing a single hyperparameter, (2) achieves a per-round weight regrowth 200 times smaller than previous methods, and (3) allows the sparse masks to adapt to highly heterogeneous data distributions and outperform all baselines under such conditions.