Abstract:The accurate segmentation of coronary Digital Subtraction Angiography (DSA) images is essential for diagnosing and treating coronary artery diseases. Despite advances in deep learning-based segmentation, challenges such as low contrast, noise, overlapping structures, high intra-class variance, and class imbalance limit precise vessel delineation. To overcome these limitations, we propose the MSA-UNet3+: a Multi-Scale Attention enhanced UNet3+ architecture for coronary DSA image segmentation. The framework combined Multi-Scale Dilated Bottleneck (MSD-Bottleneck) with Contextual Attention Fusion Module (CAFM), which not only enhances multi-scale feature extraction but also preserve fine-grained details, and improve contextual understanding. Furthermore, we propose a new Supervised Prototypical Contrastive Loss (SPCL), which combines supervised and prototypical contrastive learning to minimize class imbalance and high intra-class variance by focusing on hard-to-classified background samples. Experiments carried out on a private coronary DSA dataset demonstrate that MSA-UNet3+ outperforms state-of-the-art methods, achieving a Dice coefficient of 87.73%, an F1-score of 87.78%, and significantly reduced Average Surface Distance (ASD) and Average Contour Distance (ACD). The developed framework provides clinicians with precise vessel segmentation, enabling accurate identification of coronary stenosis and supporting informed diagnostic and therapeutic decisions. The code will be released at the following GitHub profile link https://github.com/rayanmerghani/MSA-UNet3plus.
Abstract:Medical image segmentation is crucial for clinical diagnosis and treatment planning, particularly for complex anatomical structures like vessels. In this work, we propose VesselSAM, a modified version of the Segmentation Anything Model (SAM), specifically designed for aortic vessel segmentation. VesselSAM incorporates AtrousLoRA, a novel module that combines Atrous Attention with Low-Rank Adaptation (LoRA), to improve segmentation performance. Atrous Attention enables the model to capture multi-scale contextual information, preserving both fine local details and broader global context. At the same time, LoRA facilitates efficient fine-tuning of the frozen SAM image encoder, reducing the number of trainable parameters and ensuring computational efficiency. We evaluate VesselSAM on two challenging datasets: the Aortic Vessel Tree (AVT) dataset and the Type-B Aortic Dissection (TBAD) dataset. VesselSAM achieves state-of-the-art performance with DSC scores of 93.50\%, 93.25\%, 93.02\%, and 93.26\% across multiple medical centers. Our results demonstrate that VesselSAM delivers high segmentation accuracy while significantly reducing computational overhead compared to existing large-scale models. This development paves the way for enhanced AI-based aortic vessel segmentation in clinical environments. The code and models will be released at https://github.com/Adnan-CAS/AtrousLora.