Abstract:We introduce a new observational setting for Positive Unlabeled (PU) data where the observations at prediction time are also labeled. This occurs commonly in practice -- we argue that the additional information is important for prediction, and call this task "augmented PU prediction". We allow for labeling to be feature dependent. In such scenario, Bayes classifier and its risk is established and compared with a risk of a classifier which for unlabeled data is based only on predictors. We introduce several variants of the empirical Bayes rule in such scenario and investigate their performance. We emphasise dangers (and ease) of applying classical classification rule in the augmented PU scenario -- due to no preexisting studies, an unaware researcher is prone to skewing the obtained predictions. We conclude that the variant based on recently proposed variational autoencoder designed for PU scenario works on par or better than other considered variants and yields advantage over feature-only based methods in terms of accuracy for unlabeled samples.
Abstract:In the paper we argue that performance of the classifiers based on Empirical Risk Minimization (ERM) for positive unlabeled data, which are designed for case-control sampling scheme may significantly deteriorate when applied to a single-sample scenario. We reveal why their behavior depends, in all but very specific cases, on the scenario. Also, we introduce a single-sample case analogue of the popular non-negative risk classifier designed for case-control data and compare its performance with the original proposal. We show that the significant differences occur between them, especiall when half or more positive of observations are labeled. The opposite case when ERM minimizer designed for the case-control case is applied for single-sample data is also considered and similar conclusions are drawn. Taking into account difference of scenarios requires a sole, but crucial, change in the definition of the Empirical Risk.