Abstract:Reaching the performance of fully supervised learning with unlabeled data and only labeling one sample per class might be ideal for deep learning applications. We demonstrate for the first time the potential for building one-shot semi-supervised (BOSS) learning on Cifar-10 and SVHN up to attain test accuracies that are comparable to fully supervised learning. Our method combines class prototype refining, class balancing, and self-training. A good prototype choice is essential and we propose a practical technique for obtaining iconic examples. In addition, we demonstrate that class balancing methods substantially improve accuracy results in semi-supervised learning to levels that allow self-training to reach the level of fully supervised learning performance. Rigorous empirical evaluations provide evidence that labeling large datasets is not necessary for training deep neural networks. We made our code available at \url{https://github.com/lnsmith54/BOSS} to facilitate replication and for use with future real-world applications.
Abstract:One of the greatest obstacles in the adoption of deep neural networks for new applications is that training the network typically requires a large number of manually labeled training samples. We empirically investigate the scenario where one has access to large amounts of unlabeled data but require labeling only a single prototypical sample per class in order to train a deep network (i.e., one-shot semi-supervised learning). Specifically, we investigate the recent results reported in FixMatch for one-shot semi-supervised learning to understand the factors that affect and impede high accuracies and reliability for one-shot semi-supervised learning of Cifar-10. For example, we discover that one barrier to one-shot semi-supervised learning for high-performance image classification is the unevenness of class accuracy during the training. These results point to solutions that might enable more widespread adoption of one-shot semi-supervised training methods for new applications.