Abstract:In this paper, we address the intricate issue of RF signal separation by presenting a novel adaptation of the WaveNet architecture that introduces learnable dilation parameters, significantly enhancing signal separation in dense RF spectrums. Our focused architectural refinements and innovative data augmentation strategies have markedly improved the model's ability to discern complex signal sources. This paper details our comprehensive methodology, including the refined model architecture, data preparation techniques, and the strategic training strategy that have been pivotal to our success. The efficacy of our approach is evidenced by the substantial improvements recorded: a 58.82\% increase in SINR at a BER of $10^{-3}$ for OFDM-QPSK with EMI Signal 1, surpassing traditional benchmarks. Notably, our model achieved first place in the challenge \cite{datadrivenrf2024}, demonstrating its superior performance and establishing a new standard for machine learning applications within the RF communications domain.
Abstract:Traditional anti-jamming techniques like spread spectrum, adaptive power/rate control, and cognitive radio, have demonstrated effectiveness in mitigating jamming attacks. However, their robustness against the growing complexity of internet-of-thing (IoT) networks and diverse jamming attacks is still limited. To address these challenges, machine learning (ML)-based techniques have emerged as promising solutions. By offering adaptive and intelligent anti-jamming capabilities, ML-based approaches can effectively adapt to dynamic attack scenarios and overcome the limitations of traditional methods. In this paper, we propose a deep reinforcement learning (DRL)-based approach that utilizes state input from realistic wireless network interface cards. We train five different variants of deep Q-network (DQN) agents to mitigate the effects of jamming with the aim of identifying the most sample-efficient, lightweight, robust, and least complex agent that is tailored for power-constrained devices. The simulation results demonstrate the effectiveness of the proposed DRL-based anti-jamming approach against proactive jammers, regardless of their jamming strategy which eliminates the need for a pattern recognition or jamming strategy detection step. Our findings present a promising solution for securing IoT networks against jamming attacks and highlights substantial opportunities for continued investigation and advancement within this field.