Abstract:The rapid spread of COVID-19 has necessitated efficient and accurate diagnostic methods. Computed Tomography (CT) scan images have emerged as a valuable tool for detecting the disease. In this article, we present a novel deep learning approach for automated COVID-19 CT scan classification where a modified Xception model is proposed which incorporates a newly designed channel attention mechanism and weighted global average pooling to enhance feature extraction thereby improving classification accuracy. The channel attention module selectively focuses on informative regions within each channel, enabling the model to learn discriminative features for COVID-19 detection. Experiments on a widely used COVID-19 CT scan dataset demonstrate a very good accuracy of 96.99% and show its superiority to other state-of-the-art techniques. This research can contribute to the ongoing efforts in using artificial intelligence to combat current and future pandemics and can offer promising and timely solutions for efficient medical image analysis tasks.
Abstract:Diabetic retinopathy (DR) is a leading cause of blindness among diabetic patients. Deep learning models have shown promising results in automating the detection of DR. In the present work, we propose a new methodology that integrates a feature attention module with a pretrained VGG19 convolutional neural network (CNN) for more accurate DR detection. Here, the pretrained net is fine-tuned with the proposed feature attention block. The proposed module aims to leverage the complementary information from various regions of fundus images to enhance the discriminative power of the CNN. The said feature attention module incorporates an attention mechanism which selectively highlights salient features from images and fuses them with the original input. The simultaneous learning of attention weights for the features and thereupon the combination of attention-modulated features within the feature attention block facilitates the network's ability to focus on relevant information while reducing the impact of noisy or irrelevant features. Performance of the proposed method has been evaluated on a widely used dataset for diabetic retinopathy classification e.g., the APTOS (Asia Pacific Tele-Ophthalmology Society) DR Dataset. Results are compared with/without attention module, as well as with other state-of-the-art approaches. Results confirm that the introduction of the fusion module (fusing of feature attention module with CNN) improves the accuracy of DR detection achieving an accuracy of 95.70%.
Abstract:This article aims to classify diabetic retinopathy (DR) disease into five different classes using an ensemble approach based on two popular pre-trained convolutional neural networks: VGG16 and Inception V3. The proposed model aims to leverage the strengths of the two individual nets to enhance the classification performance for diabetic retinopathy. The ensemble model architecture involves freezing a portion of the layers in each pre-trained model to utilize their learned representations effectively. Global average pooling layers are added to transform the output feature maps into fixed-length vectors. These vectors are then concatenated to form a consolidated representation of the input image. The ensemble model is trained using a dataset of diabetic retinopathy images (APTOS), divided into training and validation sets. During the training process, the model learns to classify the retinal images into the corresponding diabetic retinopathy classes. Experimental results on the test set demonstrate the efficacy of the proposed ensemble model for DR classification achieving an accuracy of 96.4%.
Abstract:In recent years, deep neural networks are yielding better performance in image classification tasks. However, the increasing complexity of datasets and the demand for improved performance necessitate the exploration of innovative techniques. The present work proposes a new deep neural network (called as, T-Fusion Net) that augments multiple localizations based spatial attention. This attention mechanism allows the network to focus on relevant image regions, improving its discriminative power. A homogeneous ensemble of the said network is further used to enhance image classification accuracy. For ensembling, the proposed approach considers multiple instances of individual T-Fusion Net. The model incorporates fuzzy max fusion to merge the outputs of individual nets. The fusion process is optimized through a carefully chosen parameter to strike a balance on the contributions of the individual models. Experimental evaluations on benchmark Covid-19 (SARS-CoV-2 CT scan) dataset demonstrate the effectiveness of the proposed T-Fusion Net as well as its ensemble. The proposed T-Fusion Net and the homogeneous ensemble model exhibit better performance, as compared to other state-of-the-art methods, achieving accuracy of 97.59% and 98.4%, respectively.