on behalf of the CMS Collaboration
Abstract:The online Data Quality Monitoring system (DQM) of the CMS electromagnetic calorimeter (ECAL) is a crucial operational tool that allows ECAL experts to quickly identify, localize, and diagnose a broad range of detector issues that would otherwise hinder physics-quality data taking. Although the existing ECAL DQM system has been continuously updated to respond to new problems, it remains one step behind newer and unforeseen issues. Using unsupervised deep learning, a real-time autoencoder-based anomaly detection system is developed that is able to detect ECAL anomalies unseen in past data. After accounting for spatial variations in the response of the ECAL and the temporal evolution of anomalies, the new system is able to efficiently detect anomalies while maintaining an estimated false discovery rate between $10^{-2}$ to $10^{-4}$, beating existing benchmarks by about two orders of magnitude. The real-world performance of the system is validated using anomalies found in 2018 and 2022 LHC collision data. Additionally, first results from deploying the autoencoder-based system in the CMS online DQM workflow for the ECAL barrel during Run 3 of the LHC are presented, showing its promising performance in detecting obscure issues that could have been missed in the existing DQM system.
Abstract:In a hadron collider environment identification of prompt photons originating in a hard partonic scattering process and rejection of non-prompt photons coming from hadronic jets or from beam related sources, is the first step for study of processes with photons in final state. Photons coming from decay of $\pi_0$'s produced inside a hadronic jet and photons produced in catastrophic bremsstrahlung by beam halo muons are two major sources of non-prompt photons. In this paper the potential of deep learning methods for separating the prompt photons from beam halo and $\pi^0$'s in the electromagnetic calorimeter of a collider detector is investigated, using an approximate description of the CMS detector. It is shown that, using only calorimetric information as images with a Convolutional Neural Network, beam halo (and $\pi^{0}$) can be separated from photon with 99.96\% (97.7\%) background rejection for 99.00\% (90.0\%) signal efficiency which is much better than traditionally employed variables.