Abstract:This study explores the development of an explainable music recommendation system with enhanced user control. Leveraging a hybrid of collaborative filtering and content-based filtering, we address the challenges of opaque recommendation logic and lack of user influence on results. We present a novel approach combining advanced algorithms and an interactive user interface. Our methodology integrates Spotify data with user preference analytics to tailor music suggestions. Evaluation through RMSE and user studies underscores the efficacy and user satisfaction with our system. The paper concludes with potential directions for future enhancements in group recommendations and dynamic feedback integration.
Abstract:Financial reports offer critical insights into a company's operations, yet their extensive length typically spanning 30 40 pages poses challenges for swift decision making in dynamic markets. To address this, we leveraged finetuned Large Language Models (LLMs) to distill key indicators and operational metrics from these reports basis questions from the user. We devised a method to locate critical data, and leverage the FinQA dataset to fine-tune both Llama-2 7B and T5 models for customized question answering. We achieved results comparable to baseline on the final numerical answer, a competitive accuracy in numerical reasoning and calculation.
Abstract:Recent advancements in deep learning have led to the development of powerful language models (LMs) that excel in various tasks. Despite these achievements, there is still room for improvement, particularly in enhancing reasoning abilities and incorporating multimodal data. This report investigates the potential impact of combining Chain-of-Thought (CoT) reasoning and Visual Question Answering (VQA) techniques to improve LM's accuracy in solving multiple-choice questions. By employing TextVQA and ScienceQA datasets, we assessed the effectiveness of three text embedding methods and three visual embedding approaches. Our experiments aimed to fill the gap in current research by investigating the combined impact of CoT and VQA, contributing to the understanding of how these techniques can improve the reasoning capabilities of state-of-the-art models like GPT-4. Results from our experiments demonstrated the potential of these approaches in enhancing LM's reasoning and question-answering capabilities, providing insights for further research and development in the field, and paving the way for more accurate and reliable AI systems that can handle complex reasoning tasks across multiple modalities.