Abstract:Ensemble learning is a method of combining multiple trained models to improve the model accuracy. We introduce the usage of such methods, specifically ensemble average inside Convolutional Neural Networks (CNNs) architectures. By Inner Average Ensemble (IEA) of multiple convolutional neural layers (CNLs) replacing the single CNL inside the CNN architecture, the accuracy of the CNN increased. A visual and a similarity score analysis of the features generated from IEA explains why it boosts the model performance. Empirical results using different benchmarking datasets and well-known deep model architectures shows that IEA outperforms the ordinary CNL used in CNNs.
Abstract:LSTMs and GRUs are the most common recurrent neural network architectures used to solve temporal sequence problems. The two architectures have differing data flows dealing with a common component called the cell state (also referred to as the memory). We attempt to enhance the memory by presenting a modification that we call the Mother Compact Recurrent Memory (MCRM). MCRMs are a type of a nested LSTM-GRU architecture where the cell state is the GRU hidden state. The concatenation of the forget gate and input gate interactions from the LSTM are considered an input to the GRU cell. Because MCRMs has this type of nesting, MCRMs have a compact memory pattern consisting of neurons that acts explicitly in both long-term and short-term fashions. For some specific tasks, empirical results show that MCRMs outperform previously used architectures.