Abstract:Standard few-shot experiments involve learning to efficiently match previously unseen samples by class. We claim that few-shot learning should be long term, assimilating knowledge for the future, without forgetting previous concepts. In the mammalian brain, the hippocampus is understood to play a significant role in this process, by learning rapidly and consolidating knowledge to the neocortex over a short term period. In this research we tested whether an artificial hippocampal algorithm, AHA, could be used with a conventional ML model analogous to the neocortex, to achieve one-shot learning both short and long term. The results demonstrated that with the addition of AHA, the system could learn in one-shot and consolidate the knowledge for the long term without catastrophic forgetting. This study is one of the first examples of using a CLS model of hippocampus to consolidate memories, and it constitutes a step toward few-shot continual learning.
Abstract:Established experimental procedures for one-shot machine learning do not test the ability to learn or remember specific instances of classes, a key feature of animal intelligence. Distinguishing specific instances is necessary for many real-world tasks, such as remembering which cup belongs to you. Generalisation within classes conflicts with the ability to separate instances of classes, making it difficult to achieve both capabilities within a single architecture. We propose an extension to the standard Omniglot classification-generalisation framework that additionally tests the ability to distinguish specific instances after one exposure and introduces noise and occlusion corruption. Learning is defined as an ability to classify as well as recall training samples. Complementary Learning Systems (CLS) is a popular model of mammalian brain regions believed to play a crucial role in learning from a single exposure to a stimulus. We created an artificial neural network implementation of CLS and applied it to the extended Omniglot benchmark. Our unsupervised model demonstrates comparable performance to existing supervised ANNs on the Omniglot classification task (requiring generalisation), without the need for domain-specific inductive biases. On the extended Omniglot instance-recognition task, the same model also demonstrates significantly better performance than a baseline nearest-neighbour approach, given partial occlusion and noise.
Abstract:The majority of ML research concerns slow, statistical learning of i.i.d. samples from large, labelled datasets. Animals do not learn this way. An enviable characteristic of animal learning is 'episodic' learning - the ability to rapidly memorize a specific experience as a composition of existing concepts, without provided labels. The new knowledge can then be used to distinguish between similar experiences, to generalize between classes, and to selectively consolidate to long-term memory. The Hippocampus is known to be vital to these abilities. AHA is a biologically-plausible computational model of the Hippocampus. Unlike most machine learning models, AHA is trained without any external labels and uses only local and immediate credit assignment. We demonstrate AHA in a superset of the Omniglot classification benchmark. The extended benchmark covers a wider range of known Hippocampal functions by testing pattern separation, completion, and reconstruction of original input. These functions are all performed within a single configuration of the computational model. Despite these constraints, results are comparable to state-of-the-art deep convolutional ANNs. In addition to the demonstrated high degree of functional overlap with the Hippocampal region, AHA is remarkably aligned to current macro-scale biological models and uses biologically plausible micro-scale learning rules.
Abstract:We present a recurrent neural network memory that uses sparse coding to create a combinatoric encoding of sequential inputs. Using several examples, we show that the network can associate distant causes and effects in a discrete stochastic process, predict partially-observable higher-order sequences, and enable a DQN agent to navigate a maze by giving it memory. The network uses only biologically-plausible, local and immediate credit assignment. Memory requirements are typically one order of magnitude less than existing LSTM, GRU and autoregressive feed-forward sequence learning models. The most significant limitation of the memory is generalization to unseen input sequences. We explore this limitation by measuring next-word prediction perplexity on the Penn Treebank dataset.
Abstract:We show that unsupervised training of latent capsule layers using only the reconstruction loss, without masking to select the correct output class, causes a loss of equivariances and other desirable capsule qualities. This implies that supervised capsules networks can't be very deep. Unsupervised sparsening of latent capsule layer activity both restores these qualities and appears to generalize better than supervised masking, while potentially enabling deeper capsules networks. We train a sparse, unsupervised capsules network of similar geometry to Sabour et al (2017) on MNIST, and then test classification accuracy on affNIST using an SVM layer. Accuracy is improved from benchmark 79% to 90%.