Abstract:Recent advances in optimization theory have shown that smooth strongly convex finite sums can be minimized faster than by treating them as a black box "batch" problem. In this work we introduce a new method in this class with a theoretical convergence rate four times faster than existing methods, for sums with sufficiently many terms. This method is also amendable to a sampling without replacement scheme that in practice gives further speed-ups. We give empirical results showing state of the art performance.
Abstract:A key problem in statistics and machine learning is the determination of network structure from data. We consider the case where the structure of the graph to be reconstructed is known to be scale-free. We show that in such cases it is natural to formulate structured sparsity inducing priors using submodular functions, and we use their Lov\'asz extension to obtain a convex relaxation. For tractable classes such as Gaussian graphical models, this leads to a convex optimization problem that can be efficiently solved. We show that our method results in an improvement in the accuracy of reconstructed networks for synthetic data. We also show how our prior encourages scale-free reconstructions on a bioinfomatics dataset.