Abstract:The advancements in computer vision and image processing techniques have led to emergence of new application in the domain of visual surveillance, targeted advertisement, content-based searching, and human-computer interaction etc. Out of the various techniques in computer vision, face analysis, in particular, has gained much attention. Several previous studies have tried to explore different applications of facial feature processing for a variety of tasks, including age and gender classification. However, despite several previous studies having explored the problem, the age and gender classification of in-wild human faces is still far from the achieving the desired levels of accuracy required for real-world applications. This paper, therefore, attempts to bridge this gap by proposing a hybrid model that combines self-attention and BiLSTM approaches for age and gender classification problems. The proposed models performance is compared with several state-of-the-art model proposed so far. An improvement of approximately 10percent and 6percent over the state-of-the-art implementations for age and gender classification, respectively, are noted for the proposed model. The proposed model is thus found to achieve superior performance and is found to provide a more generalized learning. The model can, therefore, be applied as a core classification component in various image processing and computer vision problems.
Abstract:Images generated by high-resolution SAR have vast areas of application as they can work better in adverse light and weather conditions. One such area of application is in the military systems. This study is an attempt to explore the suitability of current state-of-the-art models introduced in the domain of computer vision for SAR target classification (MSTAR). Since the application of any solution produced for military systems would be strategic and real-time, accuracy is often not the only criterion to measure its performance. Other important parameters like prediction time and input resiliency are equally important. The paper deals with these issues in the context of SAR images. Experimental results show that deep learning models can be suitably applied in the domain of SAR image classification with the desired performance levels.