Abstract:Purpose: Medical imaging has become increasingly important in diagnosing and treating oncological patients, particularly in radiotherapy. Recent advances in synthetic computed tomography (sCT) generation have increased interest in public challenges to provide data and evaluation metrics for comparing different approaches openly. This paper describes a dataset of brain and pelvis computed tomography (CT) images with rigidly registered CBCT and MRI images to facilitate the development and evaluation of sCT generation for radiotherapy planning. Acquisition and validation methods: The dataset consists of CT, CBCT, and MRI of 540 brains and 540 pelvic radiotherapy patients from three Dutch university medical centers. Subjects' ages ranged from 3 to 93 years, with a mean age of 60. Various scanner models and acquisition settings were used across patients from the three data-providing centers. Details are available in CSV files provided with the datasets. Data format and usage notes: The data is available on Zenodo (https://doi.org/10.5281/zenodo.7260705) under the SynthRAD2023 collection. The images for each subject are available in nifti format. Potential applications: This dataset will enable the evaluation and development of image synthesis algorithms for radiotherapy purposes on a realistic multi-center dataset with varying acquisition protocols. Synthetic CT generation has numerous applications in radiation therapy, including diagnosis, treatment planning, treatment monitoring, and surgical planning.
Abstract:Background: Synthetic computed tomography (sCT) has been proposed and increasingly clinically adopted to enable magnetic resonance imaging (MRI)-based radiotherapy. Deep learning (DL) has recently demonstrated the ability to generate accurate sCT from fixed MRI acquisitions. However, MRI protocols may change over time or differ between centres resulting in low-quality sCT due to poor model generalisation. Purpose: investigating domain randomisation (DR) to increase the generalisation of a DL model for brain sCT generation. Methods: CT and corresponding T1-weighted MRI with/without contrast, T2-weighted, and FLAIR MRI from 95 patients undergoing RT were collected, considering FLAIR the unseen sequence where to investigate generalisation. A ``Baseline'' generative adversarial network was trained with/without the FLAIR sequence to test how a model performs without DR. Image similarity and accuracy of sCT-based dose plans were assessed against CT to select the best-performing DR approach against the Baseline. Results: The Baseline model had the poorest performance on FLAIR, with mean absolute error (MAE)=106$\pm$20.7 HU (mean$\pm\sigma$). Performance on FLAIR significantly improved for the DR model with MAE=99.0$\pm$14.9 HU, but still inferior to the performance of the Baseline+FLAIR model (MAE=72.6$\pm$10.1 HU). Similarly, an improvement in $\gamma$-pass rate was obtained for DR vs Baseline. Conclusions: DR improved image similarity and dose accuracy on the unseen sequence compared to training only on acquired MRI. DR makes the model more robust, reducing the need for re-training when applying a model on sequences unseen and unavailable for retraining.