Abstract:Reconfigurable Intelligent Surfaces (RISs) are expected to be massively deployed in future beyond-5th generation wireless networks, thanks to their ability to programmatically alter the propagation environment, inherent low-cost and low-maintenance nature. Indeed, they are envisioned to be implemented on the facades of buildings or on moving objects. However, such an innovative characteristic may potentially turn into an involuntary negative behavior that needs to be addressed: an undesired signal scattering. In particular, RIS elements may be prone to experience failures due to lack of proper maintenance or external environmental factors. While the resulting Signal-to-Noise-Ratio (SNR) at the intended User Equipment (UE) may not be significantly degraded, we demonstrate the potential risks in terms of unwanted spreading of the transmit signal to non-intended UE. In this regard, we consider the problem of mitigating such undesired effect by proposing two simple yet effective algorithms, which are based on maximizing the Signal-to-Leakage- and-Noise-Ratio (SLNR) over a predefined two-dimensional (2D) area and are applicable in the case of perfect channel-state-information (CSI) and partial CSI, respectively. Numerical and full-wave simulations demonstrate the added gains compared to leakage-unaware and reference schemes.
Abstract:Millimeter-wave self-backhauled small cells are a key component of next-generation wireless networks. Their dense deployment will increase data rates, reduce latency, and enable efficient data transport between the access and backhaul networks, providing greater flexibility not previously possible with optical fiber. Despite their high potential, operating dense self-backhauled networks optimally is an open challenge, particularly for radio resource management (RRM). This paper presents, RadiOrchestra, a holistic RRM framework that models and optimizes beamforming, rate selection as well as user association and admission control for self-backhauled networks. The framework is designed to account for practical challenges such as hardware limitations of base stations (e.g., computational capacity, discrete rates), the need for adaptability of backhaul links, and the presence of interference. Our framework is formulated as a nonconvex mixed-integer nonlinear program, which is challenging to solve. To approach this problem, we propose three algorithms that provide a trade-off between complexity and optimality. Furthermore, we derive upper and lower bounds to characterize the performance limits of the system. We evaluate the developed strategies in various scenarios, showing the feasibility of deploying practical self-backhauling in future networks.