contrattipubblici.org}, a service by \href{https://spaziodati.eu}{SpazioDati s.r.l}. that collects public contracts stipulated in Italy in the last 25 years. Results show that the proposed model achieves better performance in classifying low-frequent classes compared to three different baselines, and is also able to predict never-seen classes.
Classifying public tenders is a useful task for both companies that are invited to participate and for inspecting fraudulent activities. To facilitate the task for both participants and public administrations, the European Union presented a common taxonomy (\textit{Common Procurement Vocabulary}, CPV) which is mandatory for tenders of certain importance; however, the contracts in which a CPV label is mandatory are the minority compared to all the Public Administrations activities. Classifying over a real-world taxonomy introduces some difficulties that can not be ignored. First of all, some fine-grained classes have an insufficient (if any) number of observations in the training set, while other classes are far more frequent (even thousands of times) than the average. To overcome those difficulties, we present a zero-shot approach, based on a pre-trained language model that relies only on label description and respects the label taxonomy. To train our proposed model, we used industrial data, which comes from \url{