This paper introduces the YouTube-8M Video Understanding Challenge hosted as a Kaggle competition and also describes my approach to experimenting with various models. For each of my experiments, I provide the score result as well as possible improvements to be made. Towards the end of the paper, I discuss the various ensemble learning techniques that I applied on the dataset which significantly boosted my overall competition score. At last, I discuss the exciting future of video understanding research and also the many applications that such research could significantly improve.