As a predictive measure of the treatment outcome in psychotherapy, the working alliance measures the agreement of the patient and the therapist in terms of their bond, task and goal. Long been a clinical quantity estimated by the patients' and therapists' self-evaluative reports, we believe that the working alliance can be better characterized using natural language processing technique directly in the dialogue transcribed in each therapy session. In this work, we propose the Working Alliance Transformer (WAT), a Transformer-based classification model that has a psychological state encoder which infers the working alliance scores by projecting the embedding of the dialogues turns onto the embedding space of the clinical inventory for working alliance. We evaluate our method in a real-world dataset with over 950 therapy sessions with anxiety, depression, schizophrenia and suicidal patients and demonstrate an empirical advantage of using information about the therapeutic states in this sequence classification task of psychotherapy dialogues.