Most existing deep learning-based image restoration methods usually aim to remove degradation with uniform spatial distribution and constant intensity, making insufficient use of degradation prior knowledge. Here we bootstrap the deep neural networks to suppress complex image degradation whose intensity is spatially variable, through utilizing prior knowledge from degraded images. Specifically, we propose an ingenious and efficient multi-frame image restoration network (DparNet) with wide & deep architecture, which integrates degraded images and prior knowledge of degradation to reconstruct images with ideal clarity and stability. The degradation prior is directly learned from degraded images in form of key degradation parameter matrix, with no requirement of any off-site knowledge. The wide & deep architecture in DparNet enables the learned parameters to directly modulate the final restoring results, boosting spatial & intensity adaptive image restoration. We demonstrate the proposed method on two representative image restoration applications: image denoising and suppression of atmospheric turbulence effects in images. Two large datasets, containing 109,536 and 49,744 images respectively, were constructed to support our experiments. The experimental results show that our DparNet significantly outperform SoTA methods in restoration performance and network efficiency. More importantly, by utilizing the learned degradation parameters via wide & deep learning, we can improve the PSNR of image restoration by 0.6~1.1 dB with less than 2% increasing in model parameter numbers and computational complexity. Our work suggests that degraded images may hide key information of the degradation process, which can be utilized to boost spatial & intensity adaptive image restoration.