Distributional semantic models have become a mainstay in NLP, providing useful features for downstream tasks. However, assessing long-term progress requires explicit long-term goals. In this paper, I take a broad linguistic perspective, looking at how well current models can deal with various semantic challenges. Given stark differences between models proposed in different subfields, a broad perspective is needed to see how we could integrate them. I conclude that, while linguistic insights can guide the design of model architectures, future progress will require balancing the often conflicting demands of linguistic expressiveness and computational tractability.