ViVa-SAFELAND is an open source software library, aimed to test and evaluate vision-based navigation strategies for aerial vehicles, with special interest in autonomous landing, while complying with legal regulations and people's safety. It consists of a collection of high definition aerial videos, focusing on real unstructured urban scenarios, recording moving obstacles of interest, such as cars and people. Then, an Emulated Aerial Vehicle (EAV) with a virtual moving camera is implemented in order to ``navigate" inside the video, according to high-order commands. ViVa-SAFELAND provides a new, safe, simple and fair comparison baseline to evaluate and compare different visual navigation solutions under the same conditions, and to randomize variables along several trials. It also facilitates the development of autonomous landing and navigation strategies, as well as the generation of image datasets for different training tasks. Moreover, it is useful for training either human of autonomous pilots using deep learning. The effectiveness of the framework for validating vision algorithms is demonstrated through two case studies, detection of moving objects and risk assessment segmentation. To our knowledge, this is the first safe validation framework of its kind, to test and compare visual navigation solution for aerial vehicles, which is a crucial aspect for urban deployment in complex real scenarios.