We present a new task of query auto-completion for estimating instance probabilities. We complete a user query prefix conditioned upon an image. Given the complete query, we fine tune a BERT embedding for estimating probabilities of a broad set of instances. The resulting instance probabilities are used for selection while being agnostic to the segmentation or attention mechanism. Our results demonstrate that auto-completion using both language and vision performs better than using only language, and that fine tuning a BERT embedding allows to efficiently rank instances in the image. In the spirit of reproducible research we make our data, models, and code available.