In this paper, I present vectorable thrust control for different locomotion modes by a novel quadruped robot, SPIDAR, equipped with vectoring rotor in each link. First, the robot's unique mechanical design, the dynamics model, and the basic control framework for terrestrial/aerial locomotion are briefly introduced. Second, a vectorable thrust control method derived from the basic control framework for aerial locomotion is presented. A key feature of this extended flight control is its ability to avoid interrotor aerodynamics interference under specific joint configuration. Third, another extended thrust control method and a fundamental gait strategy is proposed for special terrestrial locomotion called crawling that requires all legs to be lifted at the same time. Finally, the experimental results of the flight with a complex joint motion and the repeatable crawling motion are explained, which demonstrate the feasibility of the proposed thrust control methods for different locomotion modes.