I propose a novel approach for nonlinear Logistic regression using a two-layer neural network (NN) model structure with hierarchical priors on the network weights. I present a hybrid of expectation propagation called Variational Expectation Propagation approach (VEP) for approximate integration over the posterior distribution of the weights, the hierarchical scale parameters of the priors and zeta. Using a factorized posterior approximation I derive a computationally efficient algorithm, whose complexity scales similarly to an ensemble of independent sparse logistic models. The approach can be extended beyond standard activation functions and NN model structures to form flexible nonlinear binary predictors from multiple sparse linear models. I consider a hierarchical Bayesian model with logistic regression likelihood and a Gaussian prior distribution over the parameters called weights and hyperparameters. I work in the perspective of E step and M step for computing the approximating posterior and updating the parameters using the computed posterior respectively.