The use of Large Language Models (LLMs) has increased significantly recently, with individuals frequently interacting with chatbots to receive answers to a wide range of questions. In an era where information is readily accessible, it is crucial to stimulate and preserve human cognitive abilities and maintain strong reasoning skills. This paper addresses such challenges by promoting the use of hints as an alternative or a supplement to direct answers. We first introduce a manually constructed hint dataset, WIKIHINT, which includes 5,000 hints created for 1,000 questions. We then finetune open-source LLMs such as LLaMA-3.1 for hint generation in answer-aware and answer-agnostic contexts. We assess the effectiveness of the hints with human participants who try to answer questions with and without the aid of hints. Additionally, we introduce a lightweight evaluation method, HINTRANK, to evaluate and rank hints in both answer-aware and answer-agnostic settings. Our findings show that (a) the dataset helps generate more effective hints, (b) including answer information along with questions generally improves hint quality, and (c) encoder-based models perform better than decoder-based models in hint ranking.