We present Unsupervised hard Negative Augmentation (UNA), a method that generates synthetic negative instances based on the term frequency-inverse document frequency (TF-IDF) retrieval model. UNA uses TF-IDF scores to ascertain the perceived importance of terms in a sentence and then produces negative samples by replacing terms with respect to that. Our experiments demonstrate that models trained with UNA improve the overall performance in semantic textual similarity tasks. Additional performance gains are obtained when combining UNA with the paraphrasing augmentation. Further results show that our method is compatible with different backbone models. Ablation studies also support the choice of having a TF-IDF-driven control on negative augmentation.