How can we build generalist robot systems? Scale may not be enough due to the significant multimodality of robotics tasks, lack of easily accessible data and the challenges of deploying on physical hardware. Meanwhile, most deployed robotic systems today are inherently modular and can leverage the independent generalization capabilities of each module to perform well. Therefore, this thesis seeks to tackle the task of building generalist robot agents by integrating these components into one: combining modularity with large-scale learning for general purpose robot control. The first question we consider is: how can we build modularity and hierarchy into learning systems? Our key insight is that rather than having the agent learn hierarchy and low-level control end-to-end, we can enforce modularity via planning to enable more efficient and capable robot learners. Next, we come to the role of scale in building generalist robot systems. To scale, neural networks require vast amounts of diverse data, expressive architectures to fit the data and a source of supervision to generate the data. We leverage a powerful supervision source: classical planning, which can generalize, but is expensive to run and requires access to privileged information to perform well in practice. We use these planners to supervise large-scale policy learning in simulation to produce generalist agents. Finally, we consider how to unify modularity with large-scale policy learning to build real-world robot systems capable of performing zero-shot manipulation. We do so by tightly integrating key ingredients of modular high and mid-level planning, learned local control, procedural scene generation and large-scale policy learning for sim2real transfer. We demonstrate that this recipe can produce a single, generalist agent that can solve challenging long-horizon manipulation tasks in the real world.