This book is devoted to the problem of sequential probability forecasting, that is, predicting the probabilities of the next outcome of a growing sequence of observations given the past. This problem is considered in a very general setting that unifies commonly used probabilistic and non-probabilistic settings, trying to make as few as possible assumptions on the mechanism generating the observations. A common form that arises in various formulations of this problem is that of mixture predictors, which are formed as a combination of a finite or infinite set of other predictors attempting to combine their predictive powers. The main subject of this book are such mixture predictors, and the main results demonstrate the universality of this method in a very general probabilistic setting, but also show some of its limitations. While the problems considered are motivated by practical applications, involving, for example, financial, biological or behavioural data, this motivation is left implicit and all the results exposed are theoretical. The book targets graduate students and researchers interested in the problem of sequential prediction, and, more generally, in theoretical analysis of problems in machine learning and non-parametric statistics, as well as mathematical and philosophical foundations of these fields. The material in this volume is presented in a way that presumes familiarity with basic concepts of probability and statistics, up to and including probability distributions over spaces of infinite sequences. Familiarity with the literature on learning or stochastic processes is not required.