Model Predictive Path Integral (MPPI) control, Reinforcement Learning (RL), and Diffusion Models have each demonstrated strong performance in trajectory optimization, decision-making, and motion planning. However, these approaches have traditionally been treated as distinct methodologies with separate optimization frameworks. In this work, we establish a unified perspective that connects MPPI, RL, and Diffusion Models through gradient-based optimization on the Gibbs measure. We first show that MPPI can be interpreted as performing gradient ascent on a smoothed energy function. We then demonstrate that Policy Gradient methods reduce to MPPI when treating policy parameters as control variables under a fixed initial state. Additionally, we establish that the reverse sampling process in diffusion models follows the same update rule as MPPI.