In urban theory, urban form is related to social and economic status. This paper explores to uncover zip-code level income through urban form by analyzing figure-ground map, a simple, prevailing and precise representation of urban form in the field of urban study. Deep learning in computer vision enables such representation maps to be studied at a large scale. We propose to train a DCNN model to identify and uncover the internal bridge between social class and urban form. Further, using hand-crafted informative visual features related with urban form properties (building size, building density, etc.), we apply a random forest classifier to interpret how morphological properties are related with social class.