We present for the first time an asymptotic convergence analysis of two time-scale stochastic approximation driven by `controlled' Markov noise. In particular, both the faster and slower recursions have non-additive controlled Markov noise components in addition to martingale difference noise. We analyze the asymptotic behavior of our framework by relating it to limiting differential inclusions in both time-scales that are defined in terms of the ergodic occupation measures associated with the controlled Markov processes. Finally, we present a solution to the off-policy convergence problem for temporal difference learning with linear function approximation, using our results.