We investigate a method to modulate contact forces between the soft fingers of a two-finger gripper and an object, without relying on tactile sensors. This work is a follow-up to our previous results on contact detection. Here, our hypothesis is that once the contact between a finger and an object is detected, a controller that keeps a desired difference between the finger bending measurement and its bending at the moment of contact is sufficient to maintain and modulate the contact force. This approach can be simultaneously applied to both fingers while getting in contact with a single object. We successfully tested the hypothesis, and characterized the contact and peak pull-out force magnitude vs. the desired difference expressed by a multiplicative factor. All of the results are performed on a real physical device.