Existing Hardware Trojans (HT) detection methods face several critical limitations: logic testing struggles with scalability and coverage for large designs, side-channel analysis requires golden reference chips, and formal verification methods suffer from state-space explosion. The emergence of Large Language Models (LLMs) offers a promising new direction for HT detection by leveraging their natural language understanding and reasoning capabilities. For the first time, this paper explores the potential of general-purpose LLMs in detecting various HTs inserted in Register Transfer Level (RTL) designs, including SRAM, AES, and UART modules. We propose a novel tool for this goal that systematically assesses state-of-the-art LLMs (GPT-4o, Gemini 1.5 pro, and Llama 3.1) in detecting HTs without prior fine-tuning. To address potential training data bias, the tool implements perturbation techniques, i.e., variable name obfuscation, and design restructuring, that make the cases more sophisticated for the used LLMs. Our experimental evaluation demonstrates perfect detection rates by GPT-4o and Gemini 1.5 pro in baseline scenarios (100%/100% precision/recall), with both models achieving better trigger line coverage (TLC: 0.82-0.98) than payload line coverage (PLC: 0.32-0.46). Under code perturbation, while Gemini 1.5 pro maintains perfect detection performance (100%/100%), GPT-4o (100%/85.7%) and Llama 3.1 (66.7%/85.7%) show some degradation in detection rates, and all models experience decreased accuracy in localizing both triggers and payloads. This paper validates the potential of LLM approaches for hardware security applications, highlighting areas for future improvement.