Recommender systems have become a pervasive part of our daily online experience, and are one of the most widely used applications of artificial intelligence and machine learning. Therefore, regulations and requirements for trustworthy artificial intelligence, for example, the European AI Act, which includes notions such as transparency, privacy, and fairness are also highly relevant for the design of recommender systems in practice. This habilitation elaborates on aspects related to these three notions in the light of recommender systems, namely: (i) transparency and cognitive models, (ii) privacy and limited preference information, and (iii) fairness and popularity bias in recommender systems. Specifically, with respect to aspect (i), we highlight the usefulness of incorporating psychological theories for a transparent design process of recommender systems. We term this type of systems psychology-informed recommender systems. In aspect (ii), we study and address the trade-off between accuracy and privacy in differentially-private recommendations. We design a novel recommendation approach for collaborative filtering based on an efficient neighborhood reuse concept, which reduces the number of users that need to be protected with differential privacy. Furthermore, we address the related issue of limited availability of user preference information, e.g., click data, in the settings of session-based and cold-start recommendations. With respect to aspect (iii), we analyze popularity bias in recommender systems. We find that the recommendation frequency of an item is positively correlated with this item's popularity. This also leads to the unfair treatment of users with little interest in popular content. Finally, we study long-term fairness dynamics in algorithmic decision support in the labor market using agent-based modeling techniques.