In conventional colocated multiple-input multiple-output (MIMO) radars, practical waveform constraints including peak-to-average power ratio, constant or bounded modulus lead to a significant performance reduction of transmit beampattern, especially when the element number is limited. This paper adopts an active reconfigurable intelligent surface (ARIS) to assist the transmit array and discusses the corresponding beampattern synthesis. We aim to minimize the integrated sidelobe-to-mainlobe ratio (ISMR) of beampattern by the codesign of waveform and ARIS reflection coefficients. The resultant problem is nonconvex constrained fractional programming whose objective function and plenty of constraints are variable-coupled. We first convert the fractional objective function into an integral form via Dinkelbach transform, and then alternately optimize the waveform and ARIS reflection coefficients. Three types of waveforms are unifiedly optimized by a consensus alternating direction method of multipliers (CADMM)-based algorithm wherein the global optimal solutions of all subproblems are obtained, while the ARIS reflection coefficients are updated by a concave-convex procedure (CCCP)-based algorithm. The convergence is also analyzed based on the properties of CADMM and CCCP. Numerical results show that ARIS-aided MIMO radars have superior performance than conventional ones due to significant reduction of sidelobe energy.