We present a solution to real-world train scheduling problems, involving routing, scheduling, and optimization, based on Answer Set Programming (ASP). To this end, we pursue a hybrid approach that extends ASP with difference constraints to account for a fine-grained timing. More precisely, we exemplarily show how the hybrid ASP system clingo[DL] can be used to tackle demanding planning-and-scheduling problems. In particular, we investigate how to boost performance by combining distinct ASP solving techniques, such as approximations and heuristics, with preprocessing and encoding techniques for tackling large-scale, real-world train scheduling instances. Under consideration in Theory and Practice of Logic Programming (TPLP)