In this paper we develop a method for mapping forest mortality in the forest-tundra ecotone using satellite data from heterogeneous sensors. We use medium resolution imagery in order to provide the complex pattern of forest mortality in this sparsely forested area, which has been induced by an outbreak of geometrid moths. Specifically, Landsat-5 Thematic Mapper images from before the event are used, with RADARSAT-2 providing the post-event images. We obtain the difference images for both multispectral optical and synthetic aperture radar (SAR) by using a recently developed deep learning method for translating between the two domains. These differences are stacked with the original pre- and post-event images in order to let our algorithm also learn how the areas appear before and after the change event. By doing this, and focusing on learning only the changes of interest with one-class classification (OCC), we obtain good results with very little training data.