Physics-informed Neural Network (PINN) is one of the most preeminent solvers of Navier-Stokes equations, which are widely used as the governing equation of blood flow. However, current approaches, relying on full Navier-Stokes equations, are impractical for ultrafast Doppler ultrasound, the state-of-the-art technique for depiction of complex blood flow dynamics \emph{in vivo} through acquired thousands of frames (or, timestamps) per second. In this article, we first propose a novel training framework of PINN for solving Navier-Stokes equations by discretizing Navier-Stokes equations into steady state and sequentially solving steady-state Navier-Stokes equations with transfer learning. The novel training framework is coined as SeqPINN. Upon the success of SeqPINN, we adopt the idea of averaged constant stochastic gradient descent (SGD) as initialization and propose a parallel training scheme for all timestamps. To ensure an initialization that generalizes well, we borrow the concept of Stochastic Weight Averaging Gaussian to perform uncertainty estimation as an indicator of generalizability of the initialization. This algorithm, named SP-PINN, further expedites training of PINN while achieving comparable accuracy with SeqPINN. Finite-element simulations and \emph{in vitro} phantoms of single-branch and trifurcate blood vessels are used to evaluate the performance of SeqPINN and SP-PINN. Results show that both SeqPINN and SP-PINN are manyfold faster than the original design of PINN, while respectively achieving Root Mean Square Errors (RMSEs) of 1.01 cm/s and 1.26 cm/s on the straight vessel and 1.91 cm/s and 2.56 cm/s on the trifurcate blood vessel when recovering blood flow velocities.