Biosignals are nowadays important subjects for scientific researches from both theory and applications especially with the appearance of new pandemics threatening humanity such as the new Coronavirus. One aim in the present work is to prove that Wavelets may be successful machinery to understand such phenomena by applying a step forward extension of wavelets to multiwavelets. We proposed in a first step to improve the multiwavelet notion by constructing more general families using independent components for multi-scaling and multiwavelet mother functions. A special multiwavelet is then introduced, continuous and discrete multiwavelet transforms are associated, as well as new filters and algorithms of decomposition and reconstruction. The constructed multiwavelet framework is applied for some experimentations showing fast algorithms, ECG signal, and a strain of Coronavirus processing.