In the research area of anomaly detection, novel and promising methods are frequently developed. However, most existing studies, especially those leveraging deep neural networks, exclusively focus on the detection task only and ignore the interpretability of the underlying models as well as their detection results. However, anomaly interpretation, which aims to provide explanation of why specific data instances are identified as anomalies, is an equally (if not more) important task in many real-world applications. In this work, we pursue highly interpretable anomaly detection via invariant rule mining. Specifically, we leverage decision tree learning and association rule mining to automatically generate invariant rules that are consistently satisfied by the underlying data generation process. The generated invariant rules can provide explicit explanation of anomaly detection results and thus are extremely useful for subsequent decision-making. Furthermore, our empirical evaluation shows that the proposed method can also achieve comparable performance in terms of AUC and partial AUC with popular anomaly detection models in various benchmark datasets.