We propose a Multi-Layer Network based on the Bayesian framework of the Factor Graphs in Reduced Normal Form (FGrn) applied to a two-dimensional lattice. The Latent Variable Model (LVM) is the basic building block of a quadtree hierarchy built on top of a bottom layer of random variables that represent pixels of an image, a feature map, or more generally a collection of spatially distributed discrete variables. The multi-layer architecture implements a hierarchical data representation that, via belief propagation, can be used for learning and inference. Typical uses are pattern completion, correction and classification. The FGrn paradigm provides great flexibility and modularity and appears as a promising candidate for building deep networks: the system can be easily extended by introducing new and different (in cardinality and in type) variables. Prior knowledge, or supervised information, can be introduced at different scales. The FGrn paradigm provides a handy way for building all kinds of architectures by interconnecting only three types of units: Single Input Single Output (SISO) blocks, Sources and Replicators. The network is designed like a circuit diagram and the belief messages flow bidirectionally in the whole system. The learning algorithms operate only locally within each block. The framework is demonstrated in this paper in a three-layer structure applied to images extracted from a standard data set.