Time-critical control applications typically pose stringent connectivity requirements for communication networks. The imperfections associated with the wireless medium such as packet losses, synchronization errors, and varying delays have a detrimental effect on performance of real-time control, often with safety implications. This paper introduces multi-service edge-intelligence as a new paradigm for realizing time-critical control over wireless. It presents the concept of multi-service edge-intelligence which revolves around tight integration of wireless access, edge-computing and machine learning techniques, in order to provide stability guarantees under wireless imperfections. The paper articulates some of the key system design aspects of multi-service edge-intelligence. It also presents a temporal-adaptive prediction technique to cope with dynamically changing wireless environments. It provides performance results in a robotic teleoperation scenario. Finally, it discusses some open research and design challenges for multi-service edge-intelligence.