This study addresses the challenge of stroke diagnosis and treatment under uncertainty, a critical issue given the rapid progression and severe consequences of stroke conditions such as aneurysms, arteriovenous malformations (AVM), and occlusions. Current diagnostic methods, including Digital Subtraction Angiography (DSA), face limitations due to high costs and its invasive nature. To overcome these challenges, we propose a novel approach using a Partially Observable Markov Decision Process (POMDP) framework. Our model integrates advanced diagnostic tools and treatment approaches with a decision-making algorithm that accounts for the inherent uncertainties in stroke diagnosis. Our approach combines noisy observations from CT scans, Siriraj scores, and DSA reports to inform the subsequent treatment options. We utilize the online solver DESPOT, which employs tree-search methods and particle filters, to simulate potential future scenarios and guide our strategies. The results indicate that our POMDP framework balances diagnostic and treatment objectives, striking a tradeoff between the need for precise stroke identification via invasive procedures like DSA and the constraints of limited healthcare resources that necessitate more cost-effective strategies, such as in-hospital or at-home observation, by relying only relying on simulation rollouts and not imposing any prior knowledge. Our study offers a significant contribution by presenting a systematic framework that optimally integrates diagnostic and treatment processes for stroke and accounting for various uncertainties, thereby improving care and outcomes in stroke management.