We address the phase retrieval problem with errors in the sensing vectors. A number of recent methods for phase retrieval are based on least squares (LS) formulations which assume errors in the quadratic measurements. We extend this approach to handle errors in the sensing vectors by adopting the total least squares (TLS) framework familiar from linear inverse problems with operator errors. We show how gradient descent and the peculiar geometry of the phase retrieval problem can be used to obtain a simple and efficient TLS solution. Additionally, we derive the gradients of the TLS and LS solutions with respect to the sensing vectors and measurements which enables us to calculate the solution errors. By analyzing these error expressions we determine when each method should perform well. We run simulations to demonstrate the benefits of our method and verify the analysis. We further demonstrate the effectiveness of our approach by performing phase retrieval experiments on real optical hardware which naturally contains sensing vector and measurement errors.